
Parallel Path-Tracing in OpenCL and OpenMP

Darwin Torres Romero
dtorresr@andrew.cmu.edu

Neel Gandhi
ngandhi@andrew.cmu.edu

1 Project Web Page
https://sirlegolot.github.io/ray_tracer.html

2 Summary of Work so Far
The initial goal for the project was to use CUDA for the GPU accelerated ray tracing. However

there were several issues with using CUDA. First of all, the codebase we were building on (Scotty3d
code from our work in computer graphics) was simply too large to fit on AFS, which caps at 2 gb
per user. Second, even if we had the space to run on the ghc machines with the Nvidia GPUs, the
codebase required to install some additional dependencies which we were unable to install on ghc
without sudo permissions. As such, we decided to switch to using OpenCL and run our program on a
desktop we have that is fitted with an AMD Ryzen 7 3700x CPU (8 cores, 16 threads) and a Radeon
RX 5700 XT GPU.

Switching to OpenCL took a bit of time as we had to get used to the slightly different syntax and
APIs. One of the bigger issues we faced is the fact that OpenCL C is the main supported language,
which does not make use of C++ syntax like CUDA. Given that all of Scotty3d is written with
C++17 syntax and uses various C++ specific functions, we had to rewrite a significant portion of
the pathtracer pipeline in OpenCL C. This includes the various math library functions on floating
point vectors and matrices, the various ray intersection methods for different types of primitives and
light sources, the sampling schemes for BSDFs, BVH traversal, etc. As such, time had to be spent
debugging graphics math related issues instead of focusing on the parallel aspect of the code.

With respect to the parallel aspects of the code, we have so far completed the following. The
first task was to use OpenMP to produce a parallelized version of the code on the CPU. We were
quickly able to do this and saw a roughly 10-11x improvement in path tracing with 8 cores (with
2-way SMT).1 We deemed this to be reasonable given there is some innate load imbalance in ray
intersections. This is because while some rays can go and hit objects in the scene and bounce around
several times within the scene, a lot of rays either bounce once and exit or completely miss the objects
in the scene. The speedup is very much dependent on the object configurations in the scene. There is
also a portion of the code where we have to synchronize accumulating the light in pixel locations, as
threads were assigned work by doing a certain number of samples for every pixel location on the grid.
We had to make sure to atomically add the values together.

With regards to the GPU implementation, we had to make several modifications to the code base
when converting to OpenCL C. One important aspect is the fact that Scotty3D was built as a recursive
ray tracer, where bvh traversal and pathtracing is performed recursively. On OpenCL, recursion is
not supported (which makes sense since GPU threads have limited stack space). Also, BVH’s were
defined recursively with C++ templates, where you were allowed to have BVHs of BVHs of different
objects (spheres, and triangles). As such, we had to flatten the representation down to not be recursive
and also write the BVH traversal code iteratively instead of recursively. BVH traversal is normally
depth first search, which can be implemented as a stack data structure. However, using a fixed sized
stack in C or even an unbounded stack implementation in C can quickly give rise to problems given
that a BVH could easily consist of millions of nodes for high triangle count scenes. Instead, we

1On scene cbox.dae - 32 samples per pixel, 8 light samples, ray depth of 4, output image dimensions of
640x360 pixels

https://sirlegolot.github.io/ray_tracer.html


decided to implement a stackless-BVH traversal as described in Hapala et al. (2011) and a slightly
modified version of their CUDA-specific implementation which accounted for divergent execution
paths. For now, we have not implemented depth in ray traversal yet for simplicity (i.e. rays only
bounce once to a light source and we collect the light from there). We also started off with no BVH
traversal (simply looping through primitives in a scene to test intersections) for testing before we
implemented the stackless BVH traversal.

3 Preliminary Results
1. As compared to sequential code, the multithreaded CPU implementation of path tracing via

OpenMP achieved a speedup of 10-11x on 8 cores (with 2-way SMT), dependent of the
scene that is being ray traced.

2. With no BVH acceleration, the GPU implementation achieved a speedup of 28x that of
16-thread OpenMP implementation2. However, large scenes were not able to be rendered
due to GPU threads taking too much time when looping through primitives, and the AMD
drivers on the desktop shutting down the program after thinking that the GPU has been
frozen for 5 seconds.

3. With stackless BVH traversal slightly optimized for GPUs, the speedup is roughly 3x that
of the multithreaded CPU implementation 3. This is a lot lower than with no BVH, but it
makes sense because of high branch divergence when traversing a BVH on a GPU. This
change also helped prevent the timeout issue that was previously encountered.

4. Single-Threaded vs. OpenMP (8 SMT cores) vs. GPU —- (all with BVH traversal)

2On scene kirby.dae - 32 samples per pixel, 8 light samples, ray depth of 1, output image dimensions of
640x360 pixels

3On scene bunny_box.dae - 32 samples per pixel, 8 light samples, ray depth of 1, output image dimensions
of 640x360 pixels

2

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9723&rep=rep1&type=pdf


4 Issues
1. So far, we have implemented a GPU version of the code without too much modification of

the overall algorithm approach, except for implementing stackless BVH traversal on the
GPU as described in the paper mentioned earlier. There is still too much branch divergence
that is preventing significant speedup beyond the multithreaded CPU implementation. We
need to figure out a different approach to achieve speedup beyond what we currently have.

2. This goes hand in hand with the first one, but right now we have not implemented depth in
the ray tracer. While changing the ray tracing to be implemented iteratively shouldn’t be too
much of a problem, the problem is that the GPU watchdog timers will stop gpu threads if
they keep running beyond 5 seconds, which is extremely likely to happen if we bounce rays
more than once, as each bounce requires additional intersection calculations. We will have
to get around this by splitting the kernels into smaller chunks and lunch multiple kernels
after each other, or some other approach.

5 Goals and Deliverables
With respect to goals and deliverables, we are slightly behind schedule, due to issues with having

to switch to using OpenCL. Chances are that the "hope to achieve" goals will not be realistic due to
the limited time remaining from Thanksgiving break.

For the final poster presentation, we plan to have graphs of speedup comparing various scenes
as well as several pictures of renders we made with the GPU. Ideally, it would be nice to have an
interactive demo where students are able to render from a select set of models live, but bringing over
our desktop to the presentation location is not feasible.

6 Updated Schedule
Week 1 (10/31-11/6):
Set up the initial framework for running the renderer (potentially simplified version of the Scotty3D
renderer). Get the sequential version of it running. Get OMP at least compiling, and a simple pragma
for loop running.

Week 2 (11/7-11/13):
Switch to OpenCL and rewrite all logic and data structures in OpenCL C. Debug issues here.

Week 3 (11/14-11/20):
Implement no bvh traversal and stackless bvh traversal on the gpu, with not too much focus on branch
divergence. Prepare milesone report with some initial results.

Week 4 (11/21-11/27):
Research approaches to reduce branch divergence, ultimately come up with a new approach than
the one currently used to tackle speedup issues. Unfortunately, we will have no access to desktop
being used in the project during Thanksgiving, so this week will be more focused on devising and
pseudo-coding out a new approach. Testing will be limited.

Week 5-1:
Add support for ray depths greater than 1 for the GPU implementation, as well as sample counts
greater than 256 (local group size limit on GPU). - Neel
Begin coding out new approach, which will potentially involve rewriting some structure of the code. -
Darwin

Week 5-2:
Optimize BVH traversal code. Focus on preventing divergent execution. - Neel, Darwin

Week 6:
Further optimizations. Finalize project writeup and poster. Measure final numbers. Any last minute
changes made here.

3


	Project Web Page
	Summary of Work so Far
	Preliminary Results
	Issues
	Goals and Deliverables
	Updated Schedule

