
Parallel Path-Tracing in CUDA and OpenMP

Darwin Torres Romero
dtorresr@andrew.cmu.edu

Neel Gandhi
ngandhi@andrew.cmu.edu

1 Project Web Page
https://sirlegolot.github.io/ray_tracer.html

2 Summary
We are planning to implement a parallelized path tracer using the OpenMP and CUDA frameworks.

We plan on starting off with a baseline sequential implementation to compare against. This baseline
implementation will then be updated to make use of OpenMP to achieve speedup from parallelization.
The real bulk of our project will be in the CUDA implementation and trying to optimize it to achieve
similar or better results than the OpenMP implementation.

3 Background
Ray tracing is a technique used in computer graphics to render more realistic lighting of objects

in a scene. The basic idea, which can be simply gathered from the name, is to trace rays from the
camera to the scene, and determining lighting based on how those rays intersect with objects in the
scene, as well as the material property of the objects. The main computation of ray tracing thus boils
down to being able to quickly send these rays and tell whether/how they intersect objects in the scene.

In a Monte Carlo path tracer, the light contribution for each pixel in the image is a function of the
material the ray from that pixel intersects with as well as integrating the indirect light contribution
from around the point of intersection. The "rendering equation" which describes this is recursive in
nature as for a hit point on a material, we generate new rays whose direction is in the distribution of
possible angles of incoming light for the material. The contribution of those new rays is accumulated
into the light value for the pixel. The diagram below visualizes this concept:

The typical naive algorithm would have each ray loop through all the objects in the scene to
determine if that ray intersects with the object. This can quickly get extremely slow if the number of
object in the scene is high. One widely used method to accelerate ray tracing is the use of a bounded
volume hierarchy (BVH). A BVH aims to organize the objects in a scene in the form of a tree so that
a ray only needs to traverse down a single/few paths in a tree to check which objects it intersects
with, as shown in the diagram below.

https://sirlegolot.github.io/ray_tracer.html


Ray tracing stands to greatly benefit from parallelism simply from parallelizing the computation of
rays, since there isn’t any dependency between rays. However, optimizing for different architectures
is the difficult aspect of doing so.

4 The Challenge
At the surface, since each ray computation can be done independently, it seems that getting a

parallel implementation up and running will not be so difficult. The only interaction between different
samples are the updates of the output pixel value at the end of each calculation. There is no changing
state in the scene that each sample has to worry about, meaning we can immediately start new samples
without synchronization. For a framework like OpenMP, this is all good news and makes it easy to
get started. However, the same can not be said for CUDA. There are other problems that must be
considered when using CUDA to build a ray tracer.

One big issue is that each ray can experience vastly different execution paths, resulting in heavy
divergent execution. This can mean inefficient utilization of the GPU, limiting the potential speedup
we can achieve. One challenge in implementing a good CUDA ray tracer will be in preventing
divergent execution by making sure we group rays experiencing similar execution paths into the same
thread warps. Another problem is management of GPU memory. Complex scenes may require a large
Bounded Volume Hierarchy that occupies a lot of memory. If the data can not fit in the available GPU
memory, we would need to move data between RAM and GPU memory, which can hurt performance.

Visualization of divergent execution in Nvidia GPUs. Within a warp, if different groups of threads have to run
separate code paths, then these code paths are taken sequentially.

5 Resources
For starter code, we aim to build off of the Scotty3D implementation we completed when we

took computer graphics, although we may simplify it down or use other base code (such as the
scratchapixel website). With regards to approaches to combat branch divergence, we have a document
here with a list of potential papers that aim to combat it. One of the main ideas, as was discussed in
lecture, is using packet ray tracing, where we try to put rays that are going down the same traversal
path in a BVH together. In the case of a GPU, that is in the same warp. Other ideas include the
concept of a Wide Tree, where instead of a binary BVH, use a n-ary tree, with n being 4,8,16 etc. This
aims to make memory fetches more coherent and possibly improve the SIMD efficiency, though from
testing on CUDA in one of the papers, it does not seem so. We aim to further read into approaches
and make a better decision of what to implement by the end of the first week.

2

https://docs.google.com/document/d/1KZsBgmyZ2aq0MFVCnAg5txcismYmH8UfJQrVgVmu5kg/edit?usp=sharing


6 Goals and Deliverables
Plan to Achieve:

• Complete the sequential implementation of the Path Tracer

• Complete the OpenMP implementation of the Path Tracer. We hope to achieve a speedup of
at least 6x across different scenes. We expect to see close to linear speedup, and 6-8x seems
like a good target to hit with 8 cores on the GHC machines.

• Complete the CUDA implementation of the Path Tracer. We are not sure what speedup
to expect as there are many factors that affect this implementation, but we are hoping to
achieve better numbers than the OpenMP implementation. Our starting target is at least 10x
speedup compared to the serial implementation.

• We are hoping to get more insight on the effects of divergent execution on computation
times and the techniques that can be used to counteract its negative influence. Using this
information, we want to determine the feasibility of using GPUs as the primary hardware
for ray-tracing over CPUs.

• Have an interactive demo that runs high-quality renders of simple scenes. At the poster
session, we plan to showcase completed renders of more complex scenes and graphs of
speedup and render times of each implementation across various scenes.

Hope to Achieve:

• Parallelize the construction of the BVH tree

• An ISPC implementation to compare against OpenMP and CUDA

Backup Goals (If we fall behind):

• If we are unable to achieve good speedup on CUDA, we will shift our focus on performance
evaluations between OpenMP and CUDA and identifying the bottlenecks that limited the
performance.

7 Platform Choice
With CUDA, we can execute thousands of threads at the same time on an Nvidia GPU. We hope
to utilize the GPU’s numerous CUDA cores to achieve greater speedup using CUDA threads when
compared to OpenMP. To compile and run our code, we plan to use the GHC machines as they
already have the nvcc compiler installed and are equipped with RTX 2080s capable of running CUDA
software.

8 Schedule
Week 1 (10/31-11/6):
Set up the initial framework for running the renderer (potentially simplified version of the Scotty3D
renderer). Get the sequential version of it running. Get OMP at least compiling, and a simple pragma
for loop running. Continue reading into different approaches for reducing divergence in CUDA.

Week 2 (11/7-11/13):
Get a very basic version of CUDA compiling and potentially running. Right now, just set up
transferring the BVH (which was generated on the CPU) to GPU device memory. The main issues
here will be with the fact that pointers will be different on CPU vs GPU memory. Also figure out how
to split work if needed if scenes are very large and we cannot fit the object array in CUDA. Ignore
divergence issues when first setting this up. Finalize what approaches to take to tackle divergence
issue.

Week 3 (11/14-11/20):
Optimize the performance of our CUDA implementation (using ideas from papers potentially as well
as our own), prepare milestone report.

Week 4 (11/21-11/27):
Further optimizations of CUDA (we expect this might take a while). If we are way ahead of schedule,
start on stretch goals.

3



Week 5 (11/28-12/4):
Buffer in case we fall behind on schedule. If time is available work on stretch goals.

Week 6 (12/5-12/9):
Finalize project writeup and poster. Measure final numbers. Any last minute changes made here.

4


	Project Web Page
	Summary
	Background
	The Challenge
	Resources
	Goals and Deliverables
	Platform Choice
	Schedule

